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ABSTRACT
With the ongoing trend towards increased hardware hetero-
geneity, database systems will need to support many dif-
ferent processor architectures in order to fully exploit all
available hardware configurations. However, di↵erent hard-
ware architectures typically require di↵erent code optimiza-
tions, and the lack of performance portability in program-
ming frameworks like OpenCL requires developers to hand-
tune operator implementations. Even when only supporting
a few architectures, these manual optimizations can drasti-
cally inflate the source code, resulting in extensive develop-
ment and maintenance costs. Ideally, the database should be
able to automatically generate and select optimal operator
implementations from a single codebase.

In this paper, we discuss this operator variant selection
problem on heterogeneous hardware, demonstrating that even
for such simple operations as selection and aggregation, we
can already generate thousands of variants. We provide an
extensive experimental evaluation, demonstrating that pick-
ing the optimal variant is non-trivial and strongly dependent
on the specific device. Finally, we discuss how to automat-
ically select good variants at runtime and provide heuristic
selection algorithms that work well in practice.

1. INTRODUCTION
The last decade has brought a tremendous diversification

in the hardware landscape. Modern machines include multi-
core CPUs, highly parallel GPUs, and sometimes even fur-
ther co-processors, such as accelerator cards or FPGAs. This
trend towards increased heterogeneity is only expected to
increase in the future [4, 6]. Database systems will need to
embrace and exploit this increased heterogeneity in order to
keep up with the ever-growing performance requirements of
the modern information society [13].

Traditionally, database systems targeting heterogeneous
hardware have relied on hand-written implementations of
database operators for each target architecture [5, 12, 15,
19]. Hand-written code can be highly optimized, but it also
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incurs a maintenance and development cost as the number
of supported architectures increases. An alternative option
is to avoid hardware-specific code, and implement the op-
erators using a heterogeneous parallel programming frame-
work such as OpenCL [29], o✏oading the creation of device-
specific code to a vendor-provided driver. The feasibility of
this hardware-oblivious approach has been demonstrated by
Ocelot [13], an extension of MonetDB [2] that achieves com-
petitive performance across devices from a single, abstract
OpenCL codebase.

A major problem of hardware-oblivious databases is the
missing performance portability: to reach peak performance
in OpenCL, devices typically require very specific code op-
timizations which do not translate well to others [26]. This
leads to a problem: in order to build a high-performance,
hardware-oblivious database engine, we need to manually
develop and maintain several di↵erent operator variants, each
targeting di↵erent device properties. This approach obvi-
ously contradicts the initial goal of reducing development
overhead and is therefore undesirable.

A potentially better solution is to employ modern software
engineering techniques to create operator implementations
that are tailored to a specific hardware architecture from a
single, expressive codebase [8]. Even then, given the wide
range of devices and their particular characteristics, it is nec-
essary to automatically fine-tune operator implementations
to the specific device they are running on. Finding this
combination of di↵erent automatic mechanisms to achieve
performance-portable, hardware-oblivious database opera-
tors is what we call the operator variant selection problem
on heterogeneous hardware.

In this paper, we experimentally motivate this problem,
demonstrate it based on the concrete example of the selec-
tion and aggregation operators, and provide initial results
towards solving it. Specifically, we make the following con-
tributions:

• We perform an extensive experimental evaluation of
di↵erent implementations for two database operators,
selection and aggregation, to illustrate the diversity
of hardware architectures with regard to performance
optimizations (Section 2).

• We extend Micro Adaptivity [24] to handle a large vari-
ant space, and use it to automatically pick a nearly op-
timal operator variant for a specific device (Section 3).

Finally, we conclude the paper with a discussion of re-
lated work in Section 4, and present current challenges as
well as our next steps towards tackling the operator variant
selection problem in Section 5.
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Figure 1: Selection kernel variants used in the experiments. The row of boxes denote the input column; filled boxes evaluate
to true. Circles denote threads. Arrows leading upwards from threads illustrate reads, arrows leading downwards or to
the right illustrate writes. Line styles indicate storage locations: solid is global memory, dashed is local, and dotted are
thread-private registers. Wavy lines illustrate memory barriers.

In order to simplify repeating our experiments and to fa-
cilitate a better exchange with other researchers, we made
the source code for all of our experiments, including the
variant generator, the variant selection algorithms, and all
benchmarks, available at http://goo.gl/zF8U1W.

2. OPERATOR VARIANTS
In this section, we describe how a large number of database

operator implementations can be derived from a small num-
ber of basic code templates, by changing certain implemen-
tation details which do not change the semantics of the al-
gorithm. We present two use cases, a selection kernel and an
aggregation kernel. Throughout the paper, these serve as ex-
amples to illustrate performance characteristics of di↵erent
devices, and to evaluate the influence of di↵erent implemen-
tation parameters on the performance of database operators
on heterogeneous hardware.

2.1 Use Case 1: Selection
Our first use case is a selection kernel, which evaluates

a predicate on a column and returns a bitmap to indicate
which tuples satisfy the predicate.

2.1.1 Basic Variants

In Figure 1, we illustrate the primary distinctive features
of the di↵erent variants: how they access memory and con-
struct elements of the result bitmap. Note that while input
data is read from left to right, bitmaps are written from
right to left. For brevity, we only illustrate the case of four-
bit bitmaps.

Figure 1a shows the simplest possible variant, which we
call sequential : each thread evaluates the predicate for a few
consecutive values, creates the resulting bitmap element in a
register, and writes it out to the corresponding global mem-
ory address. In contrast to this, the other variants use an
interleaved access pattern, where neighboring threads eval-
uate the predicate on neighboring values. Depending on the
underlying hardware, this pattern can be more e�cient than
a sequential one.

A straightforward interleaved variant is shown in Fig-
ure 1b: threads in a work group create the output bitmap
by directly setting the corresponding bits in parallel us-
ing atomic operations. In order to ensure correctness, the
work group has to first zero-initialize the result memory,

requiring synchronization via a global memory barrier. Fig-
ure 1c shows a slightly modified version of this variant, where
the threads construct the bitmap in local memory. After
synchronizing via a local memory barrier, the work group
then copies the result to its final position in global mem-
ory. We call these two variants interleaved-atomic-global and
interleaved-atomic-local. A major problem of these variants
is their reliance on atomic operations. For predicates that
are satisfied by a large percentage of the input data, this
results in severe thread contention, as all atomic operations
on the same address are serialized by the hardware.

A variant that does not use atomics is interleaved-reduce,
shown in Figure 1d. Each thread evaluates the predicate for
one value, creates a bitmap element with the corresponding
bit set, and writes it to local memory. The work group then
cooperates to create the result bitmap by using a parallel
aggregation algorithm, as described by Horn [14]. A draw-
back of interleaved-reduce is its wastefulness with regard to
local memory: each thread only sets one bit, but stores a
full bitmap element.

The final two variants, which are summarized in Figure 1e,
work similarly but utilize resources more e�ciently. Like in
sequential, each thread first evaluates the predicate for mul-
tiple tuples, creating a bitmap element in a register. How-
ever, due to the interleaved memory access, the bit pattern
in these elements will be interleaved as well, forcing us to re-
store the correct bit order before writing to global memory.
Essentially, the intermediate bitmaps can be interpreted as
a matrix which we need to transpose, and the variants dif-
fer in how this happens. In interleaved-collect, each thread
builds one element of the result in a register by subsequently
collecting the required bits using bit masks and bit shifts.
This scales linearly with the number of matrix elements and
does not require memory barriers. In contrast, interleaved-
transpose uses the full work group to cooperatively transpose
increasingly larger tiles of the interleaved bitmap elements in
local memory. While this algorithm scales logarithmically,
it also requires additional memory barriers.

2.1.2 Implementation Parameters

The basic kernel variants described in the previous sec-
tions should be seen as “code templates” that can be mod-
ified along the following dimensions to fine-tune the imple-
mentation for a given hardware architecture:
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Figure 2: Heatmaps illustrating the relative performance of selection kernel variants across a range of selectivities, plotted
on the x-axis, on di↵erent devices. Each block represents a basic variant, with the interleaved-atomic-global and interleaved-
atomic-local variants combined into one block. Within a block, each row represents a combination of the parameters result
type, loop unrolling, and predication. For example, the top row in a block shows a 8-bit branched kernel, whereas the bottom
row shows an 64-bit unrolled, predicated kernel. Row pixels represent the runtime of the fastest combination of the parameters
work group size and elements per thread. Darker colors indicate faster execution. Runtimes are normalized for each device,
i.e., for each device, black indicates the fastest kernel. At the bottom, the range of absolute runtimes is shown in milliseconds.

Result type While we illustrated the base variants for bit-
map elements containing four bits, in reality we create
bitmaps at the granularity of 8, 16, 32, or 64 bits.

Loop unrolling We optionally remove for-loops entirely by
replicating the loop body the required number of times.

Predication In order to avoid branch mispredictions, we
can set bits unconditionally using predication when
evaluating the predicate.

Furthermore, we can use the following two parameters to
vary the workload of each thread:

Work group size The work group size (or local size) de-
termines how many threads are active in each group.
Tuning this parameter allows us to better utilize the
parallelism of the underlying hardware.

Elements per thread In order to reduce the overhead for
each thread, the variants can be modified to produce
more than one result bitmap element by sequentially
processing multiple input values.

Another possible tuning parameter is to use SIMD capa-
bilities of CPUs. However, for the selection kernel, we rely
on auto-vectorization by the OpenCL compiler.
Based on the six base variants and these parameters we

wrote a parameterized code generator that can generate over

six thousand di↵erent variants for the selection operator.
The interested reader can find source examples of the basic
variants in Appendix A.

2.1.3 Selection Kernel Performance

In a first experiment, we ran a simple range selection over
an array of 32 million random integers. Figure 2 summarizes
the runtimes of the di↵erent selection variants at di↵erent
selectivity values, normalized for each device, on a number of
CPUs and GPUs from di↵erent manufacturers, and a Xeon
Phi accelerator card. Note that interleaved-atomic kernels
are only supported for a bitmap granularity of 32 bits and,
for the AMD CPUs, of 64 bits. Furthermore, there are no
predicated or unrolled interleaved-atomic kernels. Similarly,
there are no branched interleaved-reduce variants. Also note
that there are no results for the unrolled 64-bit interleave-
transpose kernel on the IBM CPU because this variant did
not evaluate the predicate correctly.

The heatmaps clearly show the diversity in the behavior
of di↵erent devices. In particular, they show diversity:

Between device classes CPUs generally prefer a predi-
cated sequential kernel, whereas on GPUs and, sur-
prisingly, on the Xeon Phi, the interleaved-transpose
or interleaved-collect kernels are faster.

Between di↵erent manufacturers The heatmaps of the
sequential, interleave-collect, and interleave-transpose
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Figure 3: Cumulative distribution of the runtime of se-
lection kernel variants at selectivity 0.5. Runtimes are ex-
pressed as the slowdown compared to the fastest variant for
each device, capped at a factor of two. The number in paren-
theses after each device shows the maximum slowdown.

kernels on AMD and IBM CPUs are almost uniform,
although they do show a small performance slowdown
due to branch mispredictions for some variants. Con-
versely, on Intel CPUs, the performance of these ker-
nels strongly depends on the parameter combination.

Between individual devices Even devices of the same ar-
chitecture behave di↵erently. For example, the Tesla
K40M strongly prefers a branched 16-bit interleaved-
transpose kernel. On the Quadro K2100M, also a Ke-
pler device, other kernel variants are competitive, in-
cluding 8-bit interleaved-collect kernels.

For many of the devices we tested, there are quite a num-
ber of competitive kernels. These can be kernels that have
di↵erent code parameters, i.e., from di↵erent rows in Fig-
ure 2, or di↵erent workload parameters, i.e., from the same
row in Figure 2. In Figure 3 we show the percentage of
variants that are at most two times slower than the fastest
variant for each device at selectivity 0.5. Especially for the
Intel Xeon E5620, the Core i7-4900MQ, and the Core i7-
870, there are many very competitive kernel variants. More
than 10% are only minimally slower, i.e., about 3%, than
the fastest variant. Additionally, for the Intel Iris 5100, the
NVIDIA Quadro K2100M, and the AMD Radeon HD 6950
more than 10% of the kernels are less than 20% slower than
the fastest. On the other hand, for the Intel Xeon Phi and
the IBM CPU there are only few competitive kernels. Of
particular note is also the large increase in the middle of
curve for the AMD Opteron 6128 HE. Excluding the Xeon
Phi, for which the largest slowdown is quite large, the max-
imum slowdown is in the range between 12, for the Core
i7-4900MQ, and 78, for the Opteron 6128 HE, with a me-
dian of 40.

Furthermore, we can identify for most devices a kernel
variant that performs particularly well. For example, 12 dif-
ferent kernels outperform the others in the 44 experiments
at di↵erent selectivities on the four Intel CPUs. However, as
Table 1 shows, a particular variant, the unrolled, predicated

Table 1: Fastest selection kernels on Intel CPUs and how
often they outperform other variants. P stands for a predi-
cated, U for an unrolled kernel.

Variant
Core
i7-870

Xeon
E5620

Xeon E5-
2650 v2

Core i7-
4700MQ Total

64-bit sequential PU 8 6 4 9 27
64-bit sequential U 3 1 4
8-bit sequential P 3 3
32-bit sequential 2 2
eight other variants 5 2 1 8

Table 2: Fastest selection kernels on GPUs and Xeon Phi.

Device Variant
Elements
per thread

Local
size

GeForce GTX 460 32-bit transpose U 1 256
Quadro K2100M 16-bit transpose (P/PU) 1/2/4 128
Tesla K40M 16-bit transpose (U) 1 128
Radeon HD 6950 8-bit collect (U) 1 128
Iris 5100 64-bit transpose P/PU 1024 64/128

Xeon Phi SE10/7120 64-bit transpose 1/2/4 64/128

Core i7−4900MQ Core i7−870 Opteron 2356 Opteron 6128 HE
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Figure 5: Normalized runtime of the unrolled, predicated
64-bit sequential kernel on CPUs for di↵erent combinations
of the parameters work group size and elements per thread.

64-bit sequential kernel, is fastest more than 60% of the time.
Furthermore, the Intel CPUs are more or less sensitive to the
work group size and the number of elements processed by
each thread, and some CPUs prefer a particular combina-
tion of these parameters, as shown by the black hotspots
in the heatmaps in Figure 5. On the Core i7-4900MQ, a
workload that processes only one element per thread at a
work group size set by the OpenCL runtime, i.e., 0, or at
around 64, is the fastest in most cases. However, the Core
i7-870 does not perform well when the work group size is set
by the OpenCL runtime. Instead, it prefers a combination
lying on the darkly shaded line in the upper right half of
its heatmap. AMD processors are similarly sensitive to the
kernel workload as their heatmaps in Figure 5 show.

Finally, the behavior of the GPUs and the Xeon Phi accel-
erator, which we summarize in Table 2, is strikingly consis-
tent. In our experiments, a single base kernel variant, with
a particular result type and a narrow range of the workload
parameters, outperforms all other variants on each device.
The only variation we observe is that sometimes a predi-
cated and/or unrolled variant is fastest. On the GeForce
GTX 460, the same kernel variant is selected across the en-
tire selectivity range. Note that the Intel Iris 5100 prefers a
drastically di↵erent local size than the other GPUs.

While the absolute di↵erences between fast kernel variants
are very small, for some devices, they are also quite stable.
We therefore believe that these parameter configurations in-
deed constitute a performance sweet spot.
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Figure 4: Heatmaps illustrating the relative performance of sequential and interleaved aggregation kernel variants. From
top to bottom, each box represents a doubling of the unroll count from one to 64. Within a box, each row represents a
doubling of the attainable instruction level parallelism, as indicated on the y-axis. The boxes have di↵erent heights because
the instruction level parallelism can only be increased together with the loop unroll count. Each column represents a doubling
of the vector width, as indicated on the x-axis. Each pixel represents the fastest combination of the parameters work group
size and number of work groups, with darker colors indicating a faster runtime. Runtimes are normalized for each device, i.e.,
for each device, black indicates the fastest kernel. At the bottom, the range of absolute runtimes is shown in milliseconds.

2.2 Use Case 2: Aggregation
Our second use case is an aggregation kernel. Whereas the

selection kernel maps each input value to an output value
in the result bitmap, and is therefore trivial to parallelize,
the aggregation kernel reduces an input column to a single
value. Consequently, although we can aggregate distinct
parts of the input column in parallel, the final aggregation of
the intermediate values needs be performed by a single work
group. Here, we focus on the first part that can be parallized
and limit the number of intermediate results produced to a
few dozen.

2.2.1 Basic Algorithm

A basic parallel reduction strategy for GPUs, in which the
threads of a work group cooperate to produce an intermedi-
ate result, is described by Horn [14]. The number of values
that can be processed by a work group is limited by the
maximum work group size. On the devices we tested, this
size ranges from 256 threads, for the AMD Radeon HD 6950,
to 8192 threads, for the Intel CPUs. Consequently, even for
moderately sized input columns, e.g., containing more than
65k values when evaluated on the AMD Radeon HD 6950,
this strategy requires multiple passes. Each pass has to be
setup and controlled by the host code, which is why we want
to limit the computation of intermediate values to a single
pass. We can achieve this by locally aggregating a number
of input values in each thread.

Specifically, our aggregation kernel implements the follow-
ing basic algorithm. The input column is partitioned hierar-
chically into two levels: top-level partitions are aggregated
by work groups and second-level partitions by individual
threads. Each thread writes its intermediate result into a
bu↵er in local memory. Afterwards, the threads cooperate
to produce an intermediate result for each work group, using
a parallel reduction strategy [14]. Finally, the intermediates
are aggregated into a single value using atomic operations.

2.2.2 Implementation parameters

We can modify this basic algorithm along the following
dimensions to fine-tune it:

Memory access In the sequential variant, each thread ag-
gregates a consecutive partition of the input column.
Conversely, in the interleaved variant, the partitions
processed by the threads of a work group are inter-
leaved with each other to exploit coalesced memory
transfers on GPUs.

Loop unrolling Instead of completely eliminating for-loops,
as we do in the selection kernel, we replicate the loop
body a configurable number of times and modify the
loop condition accordingly.

Instruction level parallelism (ILP) Aggregating the val-
ues of a partition in multiple thread-private registers
reduces data dependencies between loop iterations.
CPUs can then use out-of-order execution to increase
instruction throughput.

Vector width We can exploit SIMD instructions to ag-
gregate multiple values at once by packing them in
OpenCL’s vector data types.

Furthermore, we vary the workload of each thread in the
same way as for the selection kernel, by changing the work
group size and the size of the partition processed by each
thread. Because we want to limit the number of interme-
diate results, we fix the number of work groups to a low
multiple of the device’s compute units and derive the par-
tition size instead of setting it explicitly. Note that when
we set the work group size to one, the algorithm reverts to
a straightforward sequential aggregation, regardless of the
memory access pattern. Similarly, if we set the partition
size to one, the algorithm reverts to a parallel reduction
strategy [14].

Based on these parameters, we currently generate up about
15000 di↵erent kernels.

2.2.3 Aggregation Kernel Performance

Again, we can use the di↵erent aggregation kernels to il-
lustrate the diversity in the hardware landscape. Figure 4
summarizes the runtime of various aggregation kernels that



Table 3: Fastest aggregation kernels with values for the
parameters unroll count (U), ILP (I), vector width (V), work
groups (W), and local size (L).

Device Kernel U I V W L

Intel Core i7-870 sequential 32 8 2 8 1
Intel Xeon E5620 sequential 8 4 16 8 1
Intel Xeon E5-2650 v2 interleaved 32 8 8 128 1
Intel Core i7-4900MQ sequential 64 4 16 8 4
AMD Opteron 2356 sequential 32 8 8 8 8
AMD Opteron 6128 HE interleaved 64 4 16 32 4

NVIDIA Geforce GTX 460 interleaved 32 1 1 128 512
NVIDIA Quadro K2100M interleaved 4 1 4 8 256
NVIDIA Tesla K40M interleaved 64 4 1 128 512
AMD Radeon HD 6950 interleaved 1 1 1 64 256
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Figure 6: Cumulative distribution of the runtime of ag-
gregation kernel variants. Runtimes are expressed as the
slowdown compared to the fastest variant for each device,
capped at a factor of two. The number in parentheses after
each device shows the maximum slowdown.

compute the sum of a column of 32 million integers. For
each device, the fastest variant is shown in Table 3.

Similarly to the selection kernel heatmaps in the previ-
ous section, we can make out patterns separating devices of
di↵erent classes, manufacturers, and architectures. For ex-
ample, the heatmaps for the two Intel Nehalem CPUs are
almost identical, and the heatmaps for the two AMD CPUs
also show a similar pattern, especially for sequential kernels.

In general, CPUs prefer a sequential kernel with high val-
ues for the code parameters unroll count, ILP, and vector
width, and low values for the workload parameters. The
Xeon E5-2650 v2 and the Opteron 6128 HE appear to be
exceptions, both prefering an interleaved kernel. However,
for the Xeon E5-2650 v2, the local size is one, which turns
this variant into a sequential kernel as described above. Note
that the minimum number of workloads in this experiment
was eight because the CPUs have at least eight cores; the
Xeon E5-2650 v2 has 32 and the Opteron 6128 HE has 16.

Conversely, GPUs prefer an interleaved kernel with low
values for the parameters ILP and vector width, and high
values for the workload parameters. The unroll count ap-
pears to have little influence, except for the Radeon HD
6950, which prefers an unroll count of one.

Finally, in Figure 6 we show the percentage of those ag-
gregation kernels that are at most two times slower than the
fastest variant on each device. Similarly to the selection use
case, there are many competitive kernels on the Intel CPUs.
Indeed, on the Core i7-4900MQ, the Xeon E5620, and the
Core i7-870, more than 40% are just 10% slower than the
fastest variant. Conversely, on the GPUs we tested, the
number of competitive kernels is fairly small, and only be-
tween 10% and 25% of them are at most two times slower
than the fastest.

3. VARIANT SELECTION
As we have seen in the previous section, we can easily

generate thousands of variants for simple database operators
by modifying a few implementation or workload parameters.
The large number of possible parameter combinations leads
to an interesting question: How do we select the best, or at
least a near-optimal, variant for a given device?

A straightforward approach is to run a training phase dur-
ing database setup in which we evaluate all possible vari-
ants to identify the fastest one. However, this method is
not feasible for a number of reasons. First, it would be
prohibitively time-consuming. The exploration of just one
operator, e.g., our exhaustive evaluation of a few thousand
selection variants in Section 2, can easily take hours on a sin-
gle device. Second, assuming we can search the full variant
space reasonably fast, we still face potential data and work-
load dependencies. Therefore, the initial exploration should
be based on a representative query workload, which is of-
ten hard to facilitate. Furthermore, even for a single query,
there might not exist a single optimal operator variant [24].
Third, in cloud-based database-as-a-service applications, the
hardware running the database might change at any given
moment because of machine migrations. Therefore, we re-
quire a flexible strategy that allows us to quickly adapt the
selected variant to the new environment.

Given these limitations of o✏ine strategies, we decided
to investigate online methods, which rely on performance
feedback generated during normal operations to select op-
erator variants. In this section, we report on our first steps
towards achieving this task. In particular, we introduce a
generic, hardware-oblivious operator variant learning frame-
work and compare a variety of di↵erent search strategies
to e�ciently explore the vast universe of possible operator
implementations. While these strategies do not guarantee
finding the optimal variant, we found that in practice even
fairly simple strategies typically converge quickly towards
close-to-optimal operator variants within only a handful of
queries.

3.1 Micro Adaptivity
Our learning framework builds upon Micro Adaptivity, an

online learning strategy to choose optimal operator imple-
mentations proposed by Raducanu et al. [24]. Micro Adap-
tivity assumes a vectorized, or block-at-a-time, in-memory
query processor [3], i.e., the query data is split into cache-
sized chunks and a function implementing a database opera-
tor is called repeatedly on the chunks to evaluate the query.
Furthermore, each database operator exists in multiple vari-
ants, which implement the same algorithm but di↵er in their
implementation details, e.g., loop unrolling or vectorization.
To find the optimal variant, Micro Adaptivity uses the vw-
greedy algorithm [24]. When a database operator is called



Figure 7: Query performance depending on pool size, using
vw-greedy to pick kernel variants at runtime compared to
using a random variant from the pool for each chunk.

for the first time, i.e., at the beginning of the first query,
each variant is called on a number of chunks to learn about
its performance. The algorithm then enters the exploitation
phase, choosing for each of the remaining chunks the fastest
variant to process them. Over time, the knowledge about the
performance of variants that are not chosen becomes stale
and, as the data and workload changes, a chosen variant
might no longer be optimal. To adapt, vw-greedy periodi-
cally enters an exploration phase, choosing a random variant
and evaluating its current performance on a small number
of chunks. Afterwards, it uses its updated knowledge about
variant performance to choose optimal variants in the next
exploitation phase.

vw-greedy has three beneficial properties which make it
suitable as a foundation for our learning framework. First,
it has very low overhead because its book-keeping costs are
amortized over the tuples contained in a chunk. Second,
each chunk provides performance information about the cur-
rently chosen variant and the periodic exploration phase al-
lows it to update its knowledge about variants that were not
chosen recently. Consequently, vw-greedy can quickly adapt
to data and workload changes. Third, slow variants will only
a↵ect the performance of a few chunks during exploration
instead of slowing down the entire query.

3.2 Variant Pool Size Limitation
By itself, vw-greedy is only able to handle cases where the

number of existing variants is comparatively small, as shown
in Figure 7. For this experiment, we evaluated a selection
query over a 16 GB column partitioned into 1024 chunks of
16 MB each, using (randomly selected) variant pools of in-
creasing sizes. For each pool size, we repeat the experiment
300 times, and, for each run, we construct a new variant pool
by randomly selecting variants from the universe of about
6000 selection kernels described in Section 2.

The box plots show the distribution of the average run-
time per chunk using two di↵erent strategies. In the random
strategy, we simply pick a random variant from the pool for
each chunk. A pool of size one can contain either a fast, a
slow, or an average variant, resulting in the large spread of
the measured chunk runtimes. As the pool size increases,
the pool will contain a mix of fast, slow, and average vari-
ants. Thus, the spread of the runtime distribution contracts
and converges towards the mean runtime of all the variants
in the universe.

Figure 8: Overview of the Variant Learning Framework.

For the other strategy, we use vw-greedy to select an opti-
mal variant for each chunk. We can make two observations:
First, vw-greedy reduces the influence of bad variants in
the pool, i.e., the spread of the runtime distribution is con-
tracted even further than using the random strategy with
increasing pool sizes. Consequently, the average runtime
approaches the performance of the optimal variant, as in-
dicated by the dashed line. However, vw-greedy also limits
the practical size of the variant pool to around eight to six-
teen variants. With larger pool sizes, the initial exploration
phase, used to determine the performance of each variant in
the pool, dominates query execution time. Indeed, in this
experiment, we use two chunks to measure variant perfor-
mance. Consequently, at a pool size of 512, the initial ex-
ploration phase comprises all of the 1024 chunks, and there
are no chunks left for the exploitation phase.

Thus, the main challenge our learning framework needs
to solve is how to select a comparatively small variant pool
from a universe that can potentially contain thousands of
possible variants.

3.3 Learning Framework Overview
Figure 8 gives an overview of our learning framework. A

parameterized variant generator is used to produce callable
variants of an operator for a given device. Individual op-
erator variants are identified through a genome, which is
a pre-defined collection of variables, and allowed values for
them, that modify the behavior of the code generator. For
example, Listing 1 shows the genome of the selection oper-
ator from Section 2.

kernel_type: { sequential, interleaved_reduce,
interleaved_transpose, interleaved_atomic_global,
interleaved_atomic_local, interleaved_collect }
result_type: { char, short, int, long }
branched: { true, false }
unrolled: { true, false }
lements_per_thread: { 1, 2, 4, 8, 16, 32, 64, 128, 256, ... }
local_size: { 0, 1, 2, 4, 8, 16, 32, 64, ... }

Listing 1: Genome definition for the selection kernel.
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Figure 9: Influence of di↵erent search strategies on the
Intel Xeon E5620, a device with many competitive variants.

Instead of instantiating the full universe of all possible im-
plementations, we only use a small working pool of around
eight to sixteen active variants during the evaluation of a
query. Queries are evaluated using a vectorized runtime [3]
which allows us to make fine-grained performance measure-
ments of the variants, and then use vw-greedy [24] to pick
an optimal variant for each chunk from the working pool.

In between queries, or after a fixed number of queries, we
use a search strategy to update the pool based on the col-
lected performance feedback. The search strategy replaces
badly performing variants in the pool by newly selected ones.
This process continuously improves the quality of the vari-
ants in the working pool, bringing the overall performance of
the system closer to the optimum in each step. Our learning
framework is fairly flexible, allowing us to plug-in di↵erent
search strategies that di↵er in how they decide which vari-
ants to pick next.

3.4 Search Strategies
As discussed in the previous section, the goal of a search

strategy is to periodically update the active variant based on
collected performance feedback by replacing underperform-
ing variants with newly selected ones. At the moment, we
use the following two strategies in our framework:

Greedy Keep the two fastest variants of the current pool.
Replace all other variants by newly selected random
ones. Random variants are generated by randomly
picking values for all variables in the genome. This
is our simplest strategy, essentially corresponding to a
random walk through the variant universe.

Genetic Keep the two fastest variants of the current pool.
Replace all other variants by following a genetic propa-
gation protocol that generates new variants by combin-
ing the genetic features of two parents from the current
pool. Parents are selected randomly, with probability
proportional to their observed performance, i.e., faster
variants have a higher chance of passing on their con-
figurations. In order to add genetic diversity and avoid
getting stuck in local minima, we also introduce mu-
tations to the new genomes with low probability.

Both search strategies are initialized with a pool consisting
of randomly chosen variants.
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Figure 10: Influence of di↵erent search strategies on the
Intel Xeon Phi, a device with few competitive variants.

3.5 Experimental Evaluation
To evaluate our learning framework, we ran a series of se-

lection kernels and measured how the query runtime changes
over time. In particular, each experimental series consists of
ten random selection queries with a fixed selectivity of 0.5.
The queries scan a 16 GB column in 1024 chunks of 16 MB
each, and we measure the average runtime per chunk for
each query. After each query, we use the selected search
strategy to evolve the current working pool, which is set to
a size of eight variants. Each experimental series is repeated
100 times to control for randomization e↵ects, resetting the
working pool before each repetition. In addition to the two
search strategies, we also use the following baseline: in the
None strategy, the working pool is initialized at random and
then remains constant for all ten queries.

We picked two devices to run the experiment on: the Intel
Xeon E5620 CPU and the Intel Xeon Phi accelerator card.
We chose these two devices because they have very di↵erent
performance distributions across the variants. Looking at
Figure 3, we can see that for the Xeon E5620, around 40%
of all variants fall within a factor of two of the optimal kernel
variant, while on the Xeon Phi only 15% of all variants fall
within this bound. This means that the E5620 is a much
easier target to optimize for, since we have a 40% chance
of picking a good kernel at random. Therefore, we expect
to clearly see di↵erent learning behaviour between the two
devices. Figure 9 shows the results for the Xeon E5620 and
Figure 10 for the Xeon Phi. The runtimes are reported as the
relative slowdown compared to the respective fastest variant,
which we determined in Section 2.

The experiment shows a few interesting things. Let us first
take a closer look at the Xeon E5620. Even without using
any search strategy, i.e., the None baseline, vw-greedy alone
produces a very competitive performance. This behavior
is caused by the performance distribution of the selection
variants for the Xeon. As discussed, 40% of all variants fall
within a factor two of the optimal one, and 30% fall within a
factor of 1.5. Consequently, a randomly initialized work pool
of size eight, as we use in this experiment, has a 94% chance
of containing a variant that is at most 1.5 times slower than
the optimal one. Since vw-greedy masks the occurrence of
slow variants in the working pool, even the None strategy
produces competitive results.

Building upon the behavior of vw-greedy during the exe-
cution of a single query, the Greedy search strategy improves



query runtimes even further. Figure 3 shows that about 15%
of the variants are within a factor of 1.1 of the fastest variant
on the Xeon. After each query, six of the eight variants in
the pool are replaced, and we have a chanche of about 60%
to choose one of those fast variants. As a result, after five
queries, the working pool contains a variant that is within a
factor of 1.1 of the optimal variant in 75% of the query series
in our experiment. The Genetic search strategy achieves an
even stronger convergence towards the optimum. Here, af-
ter two queries the runtime is within a factor of 1.1 of the
optimum in 75% percent of the time, and after seven queries
we reach a factor of 1.05.

On the Xeon Phi, vw-greedy alone cannot achieve as good
a performance as on the Xeon CPU. Here, only about 6%
of all variants fall within a factor of 1.5 of the optimal one,
meaning there is only around a 40% chance that a random,
eight-variant pool will contain a good variant. Furthermore,
the worst variant on the Xeon Phi is 444 times slower than
the optimal. Compared to other processors, there are not
only few good variants but also some very bad variants,
which are likely to cause a strong performance degradation
during the exploration phase.

While the search strategies are able to improve the per-
formance on the Xeon Phi, it is not as impressive as on
the Xeon CPU. After three queries, the Greedy strategy
is at most three times slower than the optimal variant in
75% of the queries series. The Genetic strategy shows a
slightly stronger benefit and is able to improve upon the
None baseline by about 40%. Interestingly, the best me-
dian performance of Genetic strategy, a slowdown of factor
two, is achieved after four queries, but becomes worse after
eight queries. This is most likely due to the performance
degradation caused by very bad variants on the Xeon Phi.

4. RELATED WORK
Auto-tuning has been used prominently to create highly-

optimized linear algebra libraries, e.g., ATLAS [30]. During
installation, a large space of auto-generated variants of basic
linear algebra subprograms (BLAS) is evaluated in order to
find optimal implementations for a particular environment.
Similarly, MAGMA [1] uses auto-tuning to not only find
optimal implementations on CUDA GPUs but also to keep
up with rapidly changing hardware characteristics [17].

Fabeiro et al. employ a genetic algorithm to adapt the
configuration parameters of parameterized matrix multipli-
cation kernels written in OpenCL for various device architec-
tures [10]. They note the importance of optimizing multiple
parameters simultaneously as setting a single parameter to
the learned optimal value can actually decrease performance.

Seo et al. investigate the influence of the work group size
on OpenCL kernel performance and describe a model-based
algorithm to dynamically pick a work group size that min-
imizes cache misses and improves load balancing on multi-
core CPUs [27].

Due to its simplicity and relative importance, the table
scan is probably one of the most extensively studied rela-
tional operators [7, 25, 28, 18, 23]. Optimizing its execu-
tion on modern hardware can lead to significant performance
benefits because it is the first operator executed in a query
plan and processes large amounts of data.

Ross developed a cost model to decide between branched
or predicated evaluation of compound select conditions in

order to reduce branch misprediction on CPUs [25]. Simi-
larly, Sitaridi et al. studied this problem for GPUs where the
main challenge is reduced memory bandwidth due to thread
divergence [28].

Broneske et al. evaluated the impact of combining di↵er-
ent optimization techniques to the scan operator on multiple
machines, showing that the best combination depends both
on the selectivity of the workload and the targeted proces-
sor [7]. They argue that a cost model for multiple optimiza-
tions is not feasible because complex interactions between
di↵erent optimizations make it di�cult, if not impossible,
to infer an optimal combination for a processor.

BitWeaving [18] is a CPU-based scan algorithm that uses
bit-packing to evaluate a predicate on multiple input val-
ues at once; BitWarp [23] extends this technique to GPUs,
treating the data accessed concurrently by multiple work
group threads as a single wide word. Polychroniou et al.
study the influence of vectorization on database operations
the Xeon Phi and CPUs [22]. Pirk et al. devise a set of
micro benchmarks to analyze and compare the performance
of common data management operations on GPUs and the
Xeon Phi [21].

5. CONCLUSION & FUTURE WORK
In this paper we exemplified the operator variant selection

problem on heterogeneous hardware for two simple opera-
tors: selection and aggregation. We demonstrated that even
for such simple operations, we can easily generate thousands
of di↵erent code variants. Based on an extensive experimen-
tal evaluation across multiple di↵erent hardware architec-
tures, we showed that selecting the optimal variant out of
those large number of alternatives is non-trivial and strongly
dependent on the current device. Furthermore, we discussed
how to algorithmically approach the variant selection prob-
lem. Our primary findings are that a vectorized database
runtime [3] together with vw-greedy, a multi-armed bandit
algorithm to select optimal operator implementations [24],
is a good starting point to select optimal algorithm variants
for a given device. However, we also showed that we have to
limit the pool size given to vw-greedy to achieve good results
and demonstrated how simple search strategies, which peri-
odically evolve the current set of selected variants based on
collected performance feedback, can improve the selection
quality even further.

This paper is a starting point in the investigation of the
variant selection problem for heterogeneous hardware. Be-
sides the obvious next step of extending our evaluation to
more operators (join, sort, etc.), there are other major prob-
lems that have to be solved. Clearly, the biggest missing puz-
zle piece is how to automatically generate implementation
variants for arbitrary operators in an e�cient manner. For
this paper, we used a hand-written code generator that uses
string concatenations to produce di↵erent variants. Obvi-
ously, such an approach does not scale and contradicts our
main goal of using a single performance-portable operator
implementation in the database.

Ideally, we want to define data processing operators in an
abstract fashion, and derive and generate possible variants
algorithmically. A promising approach is to use a combina-
tion of high-level DSLs, as suggested by Broneske et al. [8],
and code generation, as used in HyPer [20], Legobase [16],
Delite [9], and the work by Haensch et al. [11].



Another important aspect for future work is to keep im-
proving the variant selection framework and reduce the gap
to the optimal variant. While our current methods already
achieve fairly good results, there is obviously a lot of room
left for improvement, especially for devices with few com-
petitive variants. For the evaluation in this paper, we set
the working pool size to eight variants, based on optimal
results for the NVIDIA Tesla K40M GPU. We are currently
exploring if the pool size should also be adjusted based on
the number of competitive variants for each device.

At the moment, our methods are completely hardware-
oblivious and do not assume any prior knowledge about the
hardware environment. An almost self-evident alternative
is to investigate if we can use simple and fast micro bench-
marks to learn the characteristics of the underlying hard-
ware, e.g., the preferred memory access pattern and vec-
tor width, and use this information to seed and drive our
search strategies. Another interesting direction is to explore
advanced search heuristics that help to further restrict the
variant search space. This will be particularly important
once we move to more complex operations, where the com-
binatorial blow-up of the number of potential variants will
be much more pressing.
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APPENDIX
A. SELECTION VARIANT SOURCES

In this appendix, we list the OpenCL source code for the
basic selection kernel variants described in Section 2. All
kernels use branched evaluation and construct bitmaps with
a granuliary of eight bits, except the interleaved-reduce ker-
nel in Listing 5, which uses predication, and the atomic ker-
nels in Listing 3 and Listing 4, which use 32-bit elements.

kernel __attribute__((reqd_work_group_size(1, 1, 1)))
void scan(global int* in, global uchar* out, int cmp) {
size_t rpos = get_global_id(0) * 1 * 8;
uchar res = 0;
for (uint i=0; i<8; ++i) {
if (in[rpos++] < cmp) res |= ((uchar) 0x1) << i;

}
out[(rpos - 1)/8] = res;

}

Listing 2: Basic sequential kernel.

kernel __attribute__((reqd_work_group_size(32, 1, 1)))
void scan(global int* in, global uint* out, int cmp) {
size_t group = get_group_id(0) + get_global_offset(0) / 32;
size_t pos = group * 1 + get_local_id(0);
for(;pos<(group + 1) * 1; pos += 1) {
out[pos] = 0;

}
barrier(CLK_GLOBAL_MEM_FENCE);
pos = group * 32 + get_local_id(0);
if (in[pos] < cmp)
atomic_or(&out[pos / 32], ((uint)0x1) << (pos % 32));

}

Listing 3: Basic interleaved-global-atomic kernel.

kernel __attribute__((reqd_work_group_size(32, 1, 1)))
void scan(global int* in, global uint* out, int cmp) {
size_t group = get_group_id(0) + get_global_offset(0) / 32;
local uint scratch[1];
size_t pos = group * 32 + get_local_id(0);
size_t li = get_local_id(0);
if (li < 1) scratch[li] = 0;
barrier(CLK_LOCAL_MEM_FENCE);
if (in[pos] < cmp)
atomic_or(&scratch[li / 32],

((uint)0x1) << (pos % 32));
barrier(CLK_LOCAL_MEM_FENCE);
event_t evt = async_work_group_copy(&out[group * 1],

scratch, 1, 0);
}

Listing 4: Basic interleaved-local-atomic kernel.

kernel __attribute__((reqd_work_group_size(32, 1, 1)))
void scan(global int* in, global uchar* out, int cmp) {
size_t group = get_group_id(0) + get_global_offset(0) / 32;
size_t li = get_local_id(0);
local uchar scratch[32];
scratch[li] = ((uchar)(in[get_global_id(0)] < cmp))

<< (get_global_id(0) % 8);
barrier(CLK_LOCAL_MEM_FENCE);
for (uint stride = 1; stride < 4; stride *=2) {
if (li % (2*stride) == 0)
scratch[li] |= scratch[li + stride];

barrier(CLK_LOCAL_MEM_FENCE);
}
if (li % 8 == 0)
out[group * 4 + li / 8] = scratch[li] | scratch[li + 4];

}

Listing 5: Basic interleaved-reduce kernel.

kernel __attribute__((reqd_work_group_size(32, 1, 1)))
void scan(global int* in, global uchar* out, int cmp) {
size_t group = get_group_id(0) + get_global_offset(0) / 32;
size_t li = get_local_id(0);
local uchar scratch[32];
size_t pos = group * 256 + li;
uchar res = 0;
for (uint i=0; i<8; ++i) {
if(in[pos] < cmp) res |= ((uchar)0x1) << i;
pos += 32;

}
scratch[li] = res;
barrier(CLK_LOCAL_MEM_FENCE);
uchar mask = ((uchar)(0x1)) << (li / 4);
pos = 8 * (li % 4);
uchar rot = 8 - ( li / 4);
res = 0;
for (uint i=0; i<8; ++i) {
res |= rotate((uchar)(scratch[pos++] & mask),

(uchar)(rot++));
}
out[group * 32 + li] = res;

}

Listing 6: Basic interleaved-collect kernel.

kernel __attribute__((reqd_work_group_size(32, 1, 1)))
void scan(global int* in, global uchar* out, int cmp) {
size_t group = get_group_id(0) + get_global_offset(0) / 32;
size_t li = get_local_id(0);
local uchar scratch[32];
size_t pos = group * 256 + li;
uchar res = 0;
for (uint i=0; i<8; ++i) {
if(in[pos] < cmp) res |= ((uchar)0x1) << i;
pos += 32;

}
scratch[li] = res;
barrier(CLK_LOCAL_MEM_FENCE);
if (li < 16) {
pos = (li / 1) * 2 + li % 1;
uchar t1 = scratch[pos];
uchar t2 = scratch[pos + 1];
scratch[pos] = (t1 & ((uchar)0x55)) |

((t2 & ((uchar)0x55)) << 1);
scratch[pos + 1] = ((t1 & ((uchar)0xAA)) >> 1) |

(t2 & ((uchar)0xAA));
}
barrier(CLK_LOCAL_MEM_FENCE);
if (li < 16) {
pos = (li / 2) * 4 + li % 2;
uchar t1 = scratch[pos];
uchar t2 = scratch[pos + 2];
scratch[pos] = (t1 & ((uchar)0x33)) |

((t2 & ((uchar)0x33)) << 2);
scratch[pos + 2] = ((t1 & ((uchar)0xCC)) >> 2) |

(t2 & ((uchar)0xCC));
}
barrier(CLK_LOCAL_MEM_FENCE);
if (li < 16) {
pos = (li / 4) * 8 + li % 4;
uchar t1 = scratch[pos];
uchar t2 = scratch[pos + 4];
scratch[pos] = (t1 & ((uchar)0x0F)) |

((t2 & ((uchar)0x0F)) << 4);
scratch[pos + 4] = ((t1 & ((uchar)0xF0)) >> 4) |

(t2 & ((uchar)0xF0));
}
barrier(CLK_LOCAL_MEM_FENCE);
out[group * 32 + li] = scratch[(li % 4) * 8 + li / 4];

}

Listing 7: Basic interleaved-transpose kernel.
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