
Operator Variant Selection
on Heterogeneous Hardware

Viktor Rosenfeld, Max Heimel, Christoph Viebig, Volker Markl

ADMS '15 in conjunction with VLDB '41
Kohala Coast, Hawai'i – August 31, 2015

2

Challenge
High performance or small implementations

Solution sketch
Performance-portable database operators

Current work
Learning fast operator implementations

Experimental demonstration
Lack of performance portability in OpenCL

1

2

3

4

3

Challenge
High performance or small implementations1

4

Hardware-sensitive Approach
dedicated operator implementations for each device

x86
CPUs

NVIDIA
GPUs

AMD
GPUs

Intel
Xeon Phi

ARM
CPUs

Power
CPUs

AMD
Fusion

pro: optimal implementations
for each device

contra: development and
maintenance overhead

5

Hardware-oblivious Approach

OpenCL vendor driver / compiler

CPUs GPUs Xeon
Phi ...

support multiple devices from a single implementation

single operator
implementation

hardware-
specific code

pro: smaller code base
pro: support for unknown
devices

contra: lost optimization
opportunities

OpenCL Portability

• OpenCL offers functional portability
• But not performance portability
• Many parameters to tweak: thread workload,

memory access, special functions, ...
• Hardware-specific OpenCL implementations?

6

lack of performance portability 
limits the value of functional portability

7

Experimental demonstration
Lack of performance portability in OpenCL2

Selection Kernels

Basic algorithm
• scan over column
• evaluate predicate for each value, x < const
• return bitmap indicating satisfying values

8

Variant Dimensions
Code modifications
• Basic algorithm (memory access & result bitmap construction):

sequential, atomic-global, atomic-local, reduce, collect, transpose
• Result bitmap granularity: 8 bit, 16 bit, 32 bit, 64 bit
• Loop unrolling: yes, no
• Predication: yes, no

Workload parameters
• Local size: 1, 2, 4, 8, ..., max
• Elements per thread: 1, 2, 4, 8, ..., 1024

9
~5000 of selection kernel variants

~ 60 variants

Competitive Variants

10
often many variants are competitive

AMD Opteron 6128 HE
Intel Iris 5100

Intel Xeon E5620
AMD Opteron 2356
Intel Core i7−4900MQ
Intel Core i7−870

Intel Xeon E5−2650 v2
NVIDIA Quadro K2100M
NVIDIA Tesla K40M
AMD Radeon HD 6950
NVIDIA Geforce GTX 460

Intel Xeon Phi

IBM 8231−E2B

0%

10%

20%

30%

40%

50%

1.0 1.2 1.4 1.6 1.8 2.0
Slowdown relative to optimal variant

Pe
rc

en
ta

ge
 o

f v
ar

ia
nt

s

percentage of variants that are at most 2x
slower than fastest variant for each device

Competitive Variants

11
"easy" and "difficult" devices

Intel Xeon E5620 (15)

Intel Xeon Phi (444)

0%

10%

20%

30%

40%

50%

1.0 1.2 1.4 1.6 1.8 2.0
Slowdown relative to optimal variant

Pe
rc

en
ta

ge
 o

f v
ar

ia
nt

s

percentage of variants that are at most 2x
slower than fastest variant for each device

12

Solution sketch
Performance-portable database operators3

Automatic Variant Tuning

1. specify operators in generic fashion

2. derive different implementations

3. learn best implementation per device

13
let the system generate and find the best variant

?

?

✓

14

4
Current work
Learning fast operator implementations

Micro Adaptivity

Flavor 4Flavor 3

15

Learn best operator
implementation for
current workload

Implementation details
•Loop Unrolling
•Branch Elimination
• ...

Flavor 1 Flavor 2

explore flavor performance

no optimal operator implementation, even for a single query

exploit best flavor

data for a
single query

Raducanu et al., "Micro Adaptivity In Vectorwise", SIGMOD, 2013

Micro Adaptivity With Many Variants

16

• runtime distribution of 300 queries with 1K chunks
• for each query: select pool of size X from ~5000 different variants

Micro Adaptivity
Random
Optimal

Micro Adaptivity With Many Variants

17

• runtime distribution of 300 queries with 1K chunks
• for each query: select pool of size X from ~5000 different variants

Micro Adaptivity
Random
Optimal

• 1 variant in the pool
• can be good, bad, or average

Micro Adaptivity With Many Variants

18

• runtime distribution of 300 queries with 1K chunks
• for each query: select pool of size X from ~5000 different variants

Micro Adaptivity
Random
Optimal

• 16 variants in the pool
• every variant is used  

(no explore/exploit)
• distribution is compacted

Micro Adaptivity With Many Variants

19

• runtime distribution of 300 selection queries with 1K chunks
• for each query: select pool of size X from ~5000 different variants

as the number of variants in
the pool increases, we
converge on the mean runtime
of the variant universe

Micro Adaptivity
Random
Optimal

Micro Adaptivity With Many Variants

20

• runtime distribution of 300 queries with 1K chunks
• for each query: select pool of size X from ~5000 different variants

• small pool sizes
• distribution is shifted to

optimal value
• distribution is compacted

Micro Adaptivity
Random
Optimal

Micro Adaptivity With Many Variants

21

• runtime distribution of 300 queries with 1K chunks
• for each query: select pool of size X from ~5000 different variants

Micro Adaptivity
Random
Optimal• large pool sizes

• overhead of explore destroys
benefit of Micro Adaptivity

Search Strategies
Greedy
• keep 2 fastest variants
• randomly replace others

Genetic
• keep 2 fastest variants
• replace others by combining attributes 

from 2 parents currently in pool
• chance of becoming a parent depends on

performance
• mutate variants to get out of local minima

22

improve the pool between queries

Competitive Variants

23
"easy" and "difficult" devices

Intel Xeon E5620 (15)

Intel Xeon Phi (444)

0%

10%

20%

30%

40%

50%

1.0 1.2 1.4 1.6 1.8 2.0
Slowdown relative to optimal variant

Pe
rc

en
ta

ge
 o

f v
ar

ia
nt

s

percentage of variants that are at most 2x
slower than fastest variant for each device

Influence of Search Strategies

24

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

sl
ow

do
w

n
(c

om
pa

re
d

to
 o

pt
im

al
)

Query Number

None
Greedy
Genetic

close to optimal
performance for
"easy" devices

Intel Xeon CPU

• 100 series of 10 consecutive selection queries
• working pool: 8 variants chosen randomly at start of series
• baseline None: no updates of working pool between queries

Influence of Search Strategies

25

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

sl
ow

do
w

n
(c

om
pa

re
d

to
 o

pt
im

al
)

Query Number

None
Greedy
Genetic

Intel Xeon Phi Accelerator

• 100 series of 10 consecutive selection queries
• working pool: 8 variants chosen randomly at start of series
• baseline None: no updates of working pool between queries

room for improvement
for "difficult" devices

26

Summary and Outlook
• OpenCL offers functional portability, but lack of

performance portability limits usefulness
• we can use query feedback to learn fast data

processing operators

• generate variants automatically (step 1 and 2)
• improve search strategies (micro benchmarks,

source code metrics, ...)

Learning Framework

27

Processor Characteristics

28

Sequential

Interleaved-atomic-global and interleaved-atomic-local

Interleaved-reduce

Interleaved-collect

Interleaved-transpose

0 0.2 0.4 0.6 0.8 1

8.7 58.2
Intel

Core i7-870
(Nehalem)

0 0.2 0.4 0.6 0.8 1

10.8 100.7
Intel

Xeon E5620
(Nehalem)

0 0.2 0.4 0.6 0.8 1

1.8 15.9
Intel

Xeon E5-2650 v2
(Ivy Bridge)

0 0.2 0.4 0.6 0.8 1

6.3 61.8
Intel

Core i7-4900MQ
(Haswell)

0 0.2 0.4 0.6 0.8 1

15.6 396.8
AMD

Opteron 2356
(Barcelona)

0 0.2 0.4 0.6 0.8 1

12.2 223.6
AMD

Opteron 6128 HE
(Magny-Cours)

no results

0 0.2 0.4 0.6 0.8 1

3.2 141.3
IBM

8231-E2B
(POWER7)

0 0.2 0.4 0.6 0.8 1

1.4 14.9
Intel Xeon Phi

SE10/7120
(Knights Corner)

0 0.2 0.4 0.6 0.8 1

1.4 50.1
NVIDIA

GeForce GTX 460
(Fermi)

0 0.2 0.4 0.6 0.8 1

3.5 55.2
NVIDIA

Quadro K2100M
(Kepler)

0 0.2 0.4 0.6 0.8 1

0.7 8.9
NVIDIA

Tesla K40M
(Kepler)

0 0.2 0.4 0.6 0.8 1

1.1 40.1
AMD

Radeon HD 6950
(Terascale3)

0 0.2 0.4 0.6 0.8 1

6.2 92
Intel

Iris 5100
(Gen7.5)

Figure 2: Heatmaps illustrating the relative performance of selection kernel variants across a range of selectivities, plotted
on the x-axis, on di↵erent devices. Rows represent a combination of the parameters predication, loop unrolling, and result
type; row pixels represent the runtime of the fastest combination of the parameters work group size and elements per thread.

K40M strongly prefers a branched 16-bit interleaved-
transpose kernel. On the Quadro K2100M, also a Ke-
pler device, other kernel variants are competitive, in-
cluding 8-bit interleaved-collect kernels.

For many of the devices we tested, there are a number of
competitive kernel variants. For example, 12 di↵erent ker-
nels outperform the others in the 44 experiments at di↵erent
selectivities on the four Intel CPUs. However, as Table 1
shows, a particular variant, the unrolled, predicated 64-bit
sequential kernel, is fastest more than 60% of the time. Fur-
thermore, the Intel CPUs are more or less sensitive to the
work group size and the number of elements processed by
each thread, and some CPUs prefer a particular combination
of these parameters, as shown by the black hotspots in the
heatmaps in Figure 3. On the Core i7-870, a combination
lying on the darkly shaded line in the upper right half of
the left heatmap is the fastest in most cases, whereas on the
Core i7-4900MQ, a variant with one element per thread and
a work group size of 32, 64, or 128, shown at the bottom of
the right heatmap, is consistently the fastest. Conversely,
the behavior of the two Xeon CPUs is more random. How-
ever, note that the Xeon E5-2650 v2 is particularly slow
at the parameter combinations prefered by the Core i7-870.
The lightgrey colors in its heatmap indicate a slowdown by
more than a factor of two.

TODO: remove 2 Intel CPUs, bring in AMD CPUs
The AMD and IBM CPUs do not seem to favor a par-

ticular kernel but the behavior of the GPUs and the Xeon
Phi accelerator, which we summarize in Table 2, is strik-

Table 1: Fastest kernels on Intel CPUs and how often they
outperform other variants. P stands for a predicated, U for
an unrolled kernel.

Variant
Core
i7-870

Xeon
E5620

Xeon E5-
2650 v2

Core i7-
4700MQ Total

64-bit sequential PU 8 6 9 4 27
64-bit sequential U 3 1 4
8-bit sequential P 3 3
32-bit sequential 2 2
eight other variants 5 1 2 8

ingly consistent. In our experiments, a single base kernel
variant, with a particular result type and a narrow range of
the parameters local size and elements per thread, outper-
forms all other variants on each device. The only variation
we observe is that sometimes a predicated and/or unrolled
variant is fastest. On the GeForce GTX 460, the same kernel
variant is selected across the entire selectivity range.
While the absolute di↵erences between fast kernel variants

are very small, for some devices, they are also quite stable.
We therefore believe that these parameter configurations in-
deed constitute a performance sweet spot.

5. AGGREGATION
TODO: draft, review and shorten

5.1 Kernel variants
The second use case is aggregation. The basic aggregation

fast CPU variants

fast GPU variants

manufacturer and
architecture differences

Best Variants By Device

29

Core i7−4900MQ Core i7−870

0
1

32

1024

1 32 1024 1 32 1024
Elements per thread

Lo
ca

l s
ize

best variant is hardware-specific

Device Variant Elements
per thread

Local
size

Intel CPUs 64-bit sequential PU device-specific

NVIDIA GeForce GTX 460 32-bit transpose U 1 256
NVIDIA Quadro K2100M 16-bit transpose (P/PU) 1/2/4 128
NVIDIA Tesla K40M 16-bit transpose (U) 1 128
AMD Radeon HD 6950 8-bit collect (U) 1 128
Intel Iris 5100 64-bit transpose P/PU 1024 64/128
P: predicated, U: unrolled

