

Operator Variant Selection on Heterogeneous Hardware

Viktor Rosenfeld, Max Heimel, Christoph Viebig, Volker Markl

ADMS '15 in conjunction with VLDB '41 Kohala Coast, Hawai'i – August 31, 2015

Challenge High performance or small implementations

Experimental demonstration Lack of performance portability in OpenCL

- Solution sketch
- Performance-portable database operators

Current work

Learning fast operator implementations

Challenge High performance or small implementations

Hardware-sensitive Approach

dedicated operator implementations for each device

pro: optimal implementations for each device

contra: development and maintenance overhead

Hardware-oblivious Approach

support multiple devices from a single implementation

OpenCL Portability

- OpenCL offers *functional portability*
- But not *performance portability*
- Many parameters to tweak: thread workload, memory access, special functions, ...
- Hardware-specific OpenCL implementations?

lack of performance portability limits the value of functional portability

Experimental demonstration Lack of performance portability in OpenCL

Selection Kernels

Basic algorithm

- scan over column
- evaluate predicate for each value, *x* < *const*
- return bitmap indicating satisfying values

Variant Dimensions

Code modifications ~ 60 variants

- Basic algorithm (memory access & result bitmap construction): lacksquaresequential, atomic-global, atomic-local, reduce, collect, transpose
- Result bitmap granularity: 8 bit, 16 bit, 32 bit, 64 bit
- Loop unrolling: yes, no
- Predication: yes, no

Workload parameters

- Local size: 1, 2, 4, 8, ..., max
- Elements per thread: 1, 2, 4, 8, ..., 1024

~5000 of selection kernel variants

Competitive Variants

percentage of variants that are at most 2x slower than fastest variant for each device

often many variants are competitive

Competitive Variants

percentage of variants that are at most 2x slower than fastest variant for each device

Solution sketch

Performance-portable database operators

Automatic Variant Tuning

- 1. specify operators in generic fashion
- 2. derive different implementations
- 3. learn best implementation per device

let the system generate and find the best variant

Current work

Learning fast operator implementations

Micro Adaptivity

no optimal operator implementation, even for a single query

Raducanu et al., "Micro Adaptivity In Vectorwise", SIGMOD, 2013

- runtime distribution of 300 queries with 1K chunks
- for each query: select pool of size X from ~5000 different variants

- runtime distribution of 300 queries with 1K chunks
- for each query: select pool of size X from ~5000 different variants

- runtime distribution of 300 queries with 1K chunks
- for each query: select pool of size X from ~5000 different variants

- runtime distribution of 300 selection queries with 1K chunks
- for each query: select pool of size X from ~5000 different variants

- runtime distribution of 300 queries with 1K chunks
- for each query: select pool of size X from ~5000 different variants

- runtime distribution of 300 queries with 1K chunks
- for each query: select pool of size X from ~5000 different variants

Search Strategies

improve the pool between queries

Greedy

- keep 2 fastest variants
- randomly replace others

Genetic

- keep 2 fastest variants
- replace others by combining attributes from 2 parents currently in pool
- chance of becoming a parent depends on performance
- mutate variants to get out of local minima

Competitive Variants

percentage of variants that are at most 2x slower than fastest variant for each device

Influence of Search Strategies

- 100 series of 10 consecutive selection queries
- working pool: 8 variants chosen randomly at start of series
- baseline None: no updates of working pool between queries

Influence of Search Strategies

Intel Xeon Phi Accelerator

- 100 series of 10 consecutive selection queries
- working pool: 8 variants chosen randomly at start of series
- baseline None: no updates of working pool between queries

Summary and Outlook

- OpenCL offers functional portability, but lack of performance portability limits usefulness
- we can use query feedback to learn fast data processing operators

- generate variants automatically (step 1 and 2)
- improve search strategies (micro benchmarks, source code metrics, ...)

Learning Framework

	\bigcap horoo	toriotion
PIOCESSOI	Ulalac	lensucs

fast CPU variants	Sequential	
	Interleaved-atomic-global and interleaved-atomic	manufacturer and
		architecture differences
	Interleaved-reduce	
	Interleaved- $collect$	
	Interleaved-transpose	fast GPU variants
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1 1 1 1 1 1 1 1 1	no results no results no 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1.8 15.6 396.8 12.2 223.6 3.2 141.3 1.4 14.9 1.4 AMD AMD IQ Opteron 2356 Opteron 6128 HE 8231-E2B SE10/7120 GeForce GT (Barcelona) (Magny-Cours) (POWER7) (Knights Corner)	0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 <td< td=""></td<>

Best Variants By Device

Device	Variant	Elements per thread	Local size
Intel CPUs	64-bit sequential PU	device- $specific$	
NVIDIA GeForce GTX 460 NVIDIA Quadro K2100M NVIDIA Tesla K40M AMD Radeon HD 6950 Intel Iris 5100	 32-bit transpose U 16-bit transpose (P/PU) 16-bit transpose (U) 8-bit collect (U) 64-bit transpose P/PU 	$egin{array}{c} 1 \\ 1/2/4 \\ 1 \\ 1 \\ 1024 \end{array}$	$256 \\ 128 \\ 128 \\ 128 \\ 128 \\ 64/128$

P: predicated, U: unrolled

