Deutsches
Forschungszentrum
fur Kunstliche
Intelligenz GmbH

Performance Analysis and
Automatic Tuning of
Hash Aggregation on GPUs

Viktor Rosenfeld, Sebastian Brel3, Steffen Zeuch, Tilmann Rabl, Volker Markl

DaMoN '19, Amsterdam, The Netherlands

Hash aggregation on GPUs

Hash aggregation:
e Used to implement GROUP BY and DISTINCT. 14

Aggregation over 1024 groups

12.75
* (Can be significantly accelerated on the GPU. 12 -
glO-
Example: S
e Query: s
SELECT G, sum(A) FROM R GROUP BY G 3
£ 4_
» Processor: AMD A10-7850K APU. i} 5
 CPU and GPU cores integrated on the same die.

= Aggregation on GPU cores 1.6x — 4.8x faster cores B core

across different group cardinalities.

Previous work

* Hash aggregation extensively studied on CPUs.

* Only a single in-depth study on GPUs:
Karnagel et al., Optimizing GPU-accelerated Group-By
and Aggregation, ADMS@VLDB, 2015

* bvaluated influence of parallelization strategies and
thread configuration based on group cardinality.

* Formulated heuristics based on a single NVIDIA
Kepler GPU.

Adaptive Aggregation on Chip Multiprocessors

John Cieslewicz*' Kenneth A. Rosst
Columbia University Columbia University

johnc@cs.columbia.edu

kar@cs.columbia.edu

Scalable Aggregation on Multicore Processors

Yang Ye, Kenneth A. Ross; Norases Vesdapunt
Department of Computer Science, Columbia University, New York NY
(yeyang,kar)@cs.columbia.edu, nv2157@columbia.edu

Optimizing GPU-accelerated Group-By and Aggregation

*
Tomas Karnagel
Technische Universitat Dresden
Dresden, Germany

tomas.karnagel@tu-dresden.de

ABSTRACT

The massive parallelism and faster random memory access
of Graphics Processing Units (GPUs) promise to further
accelerate complex analytics operations such as joins and
grouping, but also provide additional challenges to optimiz-
ing their performance. There are more implementation al-
ternatives to consider on the GPU, such as exploiting dif-
ferent types of memory on the device and the division of
work among processor clusters and threads, and additional
performance parameters, such as the size of the kernel grid
and the trade-off between the number of threads and the
resulting share of resources each thread will get.

In this paper, we study in depth offloading to a GPU
the grouping and aggregation operator, often the dominant
operation in analytics queries after joins. We primarily fo-
cus on the design implications of a hash-based implemen-
tation, although we also compare it against a sort-based
approach. Our study provides (1) a detailed performance
analysis of grouping and aggregation on the GPU as the
number of groups in the result varies, (2) an analysis of the
truncation effects of hash functions commonly used in hash-
based grouping, and (3) a simple parametric model for a
wide range of workloads with a heuristic optimizer to au-
tomatically pick the best implementation and performance
parameters at execution time.

1. INTRODUCTION

Despite the recent performance gains that in-memory da-
tabase systems have brought to the relatively mature tech-
nology for processing complex SQL analytics queries, user
requirements for ever-faster performance over ever-larger da-
tabases has sparked increasing interest in exploiting Graph-
ics Processing Units (GPUs) for further accelerating these
queries. GPUs promise massive parallelism and faster mem-
ory access, particularly for the random accesses that are so

*Work done while author was at IBM Research Almaden.

Rene Mueller Guy M. Lohman
IBM Research—Almaden
San Jose, CA USA

{muellerr, lohmang}@us.ibm.com

prevalent in joins and grouping operations that dominate
the execution time in analytical queries.

As is true for traditional CPU-based database processing,
the best implementation and parameter settings for GPU
processing depend upon (a) the given SQL query, (b) the
data distribution (such as cardinality and skew), and (c)
the hardware it is run on.

But building database engines for execution on GPUs
presents many additional challenges. Often entirely new ap-
proaches and algorithms are necessary to adequately exploit
the massive parallelism GPUs offer. There are more im-
plementation alternatives to consider on the GPU, such as
exploiting different types of memory on the device (global
memory and local scratchpad memory) versus the CPU’s
memory, and the division of work among processor clusters
and threads. To make matters worse, there are also more
performance parameters, such as the size of the kernel grid
and the trade-off between the number of threads and the
resulting share of resources each thread will get. Grouping
and aggregation, e.g., for the SQL “GROUP BY” clause, is
one of the most time-consuming operators in any database
system, especially when performing cubing in On-Line Ana-
lytic Processing (OLAP) systems, and dominates the perfor-
mance time in systems that encourage de-normalized (pre-
joined) schemas for performance reasons [9, 27] or that even
do not support joins at all, such as “NoSQL” systems, e.g.,
MongoDB.

In this paper, we study in depth offloading the grouping
operator to a GPU. We primarily focus on the design im-
plications of a hash-based implementation, although we also
compare it against a sort-based approach in Section 5.2. Our
study provides (1) a detailed performance analysis of group-
ing and aggregation on the GPU as the number of groups
in the result varies, (2) an analysis of the truncation effects
of hash functions commonly used in hash-based grouping,
and (3) a simple parametric model for a wide range of work-
loads with a heuristic optimizer to automatically pick the
best implementation and performance parameters at execu-
tion time. We make two simplifying assumptions. First, we
assume that the intermediate data structures, such as the
hash tables, fit into the device memory of the GPU so that
no spilling to main memory or disk occurs. Second, we make
the simplifying assumption that there are no queries execut-
ing concurrently on the GPU. We do not think that these
simplifications are too restrictive in terms of the workloads
that can be run. First of all, GPUs today come with sig-
nificant memory — up to 12 or 24 GB. Second, since OLAP
workloads seek to minimize the response time, it makes sense

Do these heuristics yield good performance on other GPUs?

Part 1

Performance analysis of hash
aggregation on various GPUs

Tested GPUs

GPU Microarchitecture Integration
Tesla K40m Kepler PCle 3.0
Gelorce GTX 980 Maxwell PCle 3.0
GelForce GTX 1080 Pascal PCle 3.0
Tesla V100 \Volta NVLink 2.0
A10-7850K Graphics Core Next 2nd Gen. on die
Radeon R9 Fury Graphics Core Next 3rd Gen. PCle 3.0

Parallelization strategies

Thread = e (Concurrent accesses to same hash
SHARED oo | Hast bucket resolved with atomics.
hread —»| table
Thread—{)
e SHARED and INDEPENDENT also
Thread—»(HT>{ commonly used on CPUSs.
Thread _V@_> Hash
D [
INDEPENDEN Thread —»(HT)-»| table * \WWORKGROUPLOCAL uses fast local
read >{TH GPU memory.
Thread—» - A :
iy d_» o * [astest strategy Is data and query
asS '
WORKGROUPLOCAL Thread—» table dependent (amount of contention
HT L
Thread—{ | and cache efficiency).
Local

memory

How do these parallelization strategies perform on different GPUs?

SELECT G, sum(A)

Parallelization strategies s corere

~ Parallelization strategy @ —®— SHARED —A— |INDEPENDENT —#— WORKGROUPLOCAL
INDEPENDENT Is best
\' Tesla K40m (Kepler) Tesla V100 (Volta)
Local L2 50 80 - Local L2 - 600
g g- l l = k Native atomics on local
g 60 % 60 - K — memory (since Maxwell)
- - - 400
] ammm I 5 5 .
6 - LOCAL is best -
f? . PR) [— w
§- §- Different region
5 3- 5 20 o
= - 20 = B}
T L _w S o ________ Ple 30 7 | ~ NVLink 2.0 -
O i . . ‘ B O O | . . B O
2IO 2I4 2IS 2I12 2I16 2I20 2I24 2I28 2IO 2I4 2IS 2I12 2I16 2I20 2I24 2I28
Number of groups Number of groups

INDEPENDENT aggregation not competitive on newer GPUs that implement fast atomics on local memory.

Thread configurations

 Number of threads determined by two
variables (OpenCL terminology).

= NN O O
N G =, DN
o O N S

* Work groups per compute unit

* Work items per work group

e Performance influenced by hardware
and kernel properties.

Work items per work group
W

————— * \Warp size, register file, LB cache, ...

1 2 4 3 16 32 64 128 256. 512 1024

York groups per compute unit » Number of registers used in kernel,
. local memory usage, ...

Faster Slower

Can we find optimal thread configurations across GPUs?

SELECT G, sum(A)
FROM R GROUP BY G;

Performance penalty

* \When a thread configuration optimized for a specific GPU (rows) is ExEleib|isloNelai=1alelial=TRC (=¥

(columns).

Tesla K40m |- : 3.4 2.7 4.6 - 1.2 . 4.2
GeForce GTX 980 | 105 | ' 1.1 - 1.6 . 14 . 2.8
GeForce GTX 1080 | 120.8] 1.2 5 24 1.3 11.8
Tesla V100 [l 4.0 1.2 1.2 1.2
A10-7850K 7.5 1.8 116.9
Radeon R9 Fury 9.6 2.1 1.5 o

0 10 20 4 0 1 2 3 0.0 25 50 7.5 10000 05 10 15 20 O 5 10 15 20

Normalized runtime (different scales)

The optimal thread configuration is highly GPU-dependent.

Full evaluation takes hours. How can we find fast thread configurations efficiently?

Part 2

Finding fast
thread configurations

Thread configuration search space

Normalized runtime

Work 1items per work group

e Search space: Tesla K40m, SHAR

1024 -

N O
& I
@) N\

|

p—t

N

o0
I

= W O
) R N R

= N B 00

142 151 150 151 Q1504 151 1.49 g 1.48 1.46 § 1.49
1.10 142 151 151 151 151 151 150 149 149 148

- 114 110 142 151 152 152 151 151 151 150 151
142 152 152 152 151 150 150 1.50

1.14 110 142 142 141 141 141 140 1.40

163 114 110 1.10 1.10 1.09 1.10 1.10 1.09

1.30 101 101 101 g100yg 1.00 1.01 g 1.00

190 114 114 113 113 1.13 112 1.12

10.68 154 153 150 150 150 150 1.49

16.86 231 228 225 225 224 224 222

27.12 | 13.69

2

4

8

16 32 64 128 256 512 1024

Work groups per compute unit

Work items per work group

Influence regions of local minima

—

=N O O
= W O N O =N
@) B N R C A @) B O T -

= N B 00

1 2 4 3
Work groups per compute unit

16 32 64 128 256 512 1024

D aggregation, ca. 8 million groups.
e Search space appears convex but has multiple local minima.

11

Performance plateaus .

Absolute runtimes
differ by less than 0.5%

1024 4 142 151 150 151 150 151 149 148 149 146 1.49 (é) N
% 5124 110 142 151 151 151 151 151 150 149 149 1.48 Q 4
@) E | I ®
“ 929564 114 §110Q§ 142 151 152 152 151 151 151 150 151 g .45
o0 - 1
—g 1284 159 114 109 142 152 152 152 151 150 150 150 D::* 2 40 - e
< 64 4 308 163 114 J1.10Q 142 142 141 141 141 140 1.40 ! ! !
_ 2x256 4x128 3x64
() _ : i
o 32 313 163 1.14 1.10 1.10 1.10 1.09 1.10 1.10 1.09 Thread conflguratlon
‘é’ 16 - 452 234 130 101 101 1.01 100 1.00 1.01 1.00
) .
-+ ol 13.54 - : . 1.14 114 113 113 113 112 1.12 ° Performance plateau: Runtlmes Of J[WO
_E i 21.18 - 288 154 153 150 150 150 150 1.49 ' ; : :
S adjacent thread configurations differ by
; e 33 . : 231 228 225 225 224 224 222

less than a small delta.
1 - 360 356 354 353 352 351 348

1 2 4 8 16 32 64 128 256 512 1004 d Nearly convex. Slng\e local minimum |If
Work groups per compute unit we account for runtime variation.

Thread configuration search spaces are nearly convex.

Finding fast thread configurations

256 -

—

S N

~ 00
I I

Work 1tems per work group
— W
QO O DN

1024 -
512 -1.42

1.14 110 1.42

1.14

09 1.42

1.1

4 1.42

114 110 1.10 1.10 109 1.10 1.10 ___1.09

1.30 101 1.01 1.01 1.00 1.00 1.01 y1.00

190 114 114 113 113 113 112 1.12

1

2

4

g 16 32

64 1238 256 512 1024

Work groups per compute unit

(» Start with initial thread configuration.

®» Follow gradient in search space to
local minimum.

®» Branch search path at performance
plateaus.

® Prune branches that are slower than
the tfastest thread configuration founad
SO far.

(® Stop at minimum when there are no
more branches.

Approach: Follow gradient and branch search path at performance plateaus.

13

Runtime of found implementation

Tesla K40m

GeForce GTX 980

GeForce GTX 1080

Tesla V100

A10-7850K

Radeon R9 Fury

1.00

1.05

1.10 1.15 1.20 1.25 1.30
Normalized runtime

Follow to local minimum - Branch at performance plateaus

1.35

1.40

14

Summary

1.

INDEPENDENT aggregation is not competitive on newer GPUs that implement fast atomics on local
memory. Use WORKGROUPLOCAL aggregation instead.

The optimal thread configuration is highly dependent on the executing GPU.

Heuristics derived from analyzing a single GPU
are not generalizable to other GPUs.

Thread configuration search spaces are nearly convex, i.e., they have a single local minimum
when we account for runtime variation.

Follow gradient and branch at performance plateaus
to find fast thread configurations.

NVIDIA GPUs exhibit a low degree of runtime variation. AMD GPUs exhibit a high degree of
runtime variation.

Aggregation performance is limited by global GPU memory latency (and not transfer bandwidth)
when the hash table exceeds the L2 cache. i

