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Today’s computing systems are highly heterogeneous.
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Specialized processors

Processors are optimized for different application scenarios to overcome the power wall.
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Diverse users requirements
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Programming languages have to meet users’ skill set and performance requirements.
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Complex data processing pipelines
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Complex software ecosystems integrate many specialized tools to solve data processing tasks.
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Thesis statement and goals

Heterogeneity is a benefit. Heterogeneity is a challenge.

It enables the tools that allow different users to 't increases the complexity of the computing
process large data sets efticiently. Infrastructure.

Investigate how heterogeneous hardware and software impact query processing systems.

Optimize query processing performance on heterogeneous hardware and software systems.

Query Processing on Heterogeneous Systems @



T hree scenarios
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Processing Java UDFs
in a C++ Environment

ACM SoCC 2019
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Query Processing on Operator Variant Tuning on
Heterogeneous CPU/GPU Systems Heterogeneous Processors
ACM CSUR 2022 ADMS 2015, DaMoN 2019
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Common challenges posed by

neterogeneous hardware and software

Distributing computation Reducing data movement
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Cross-platform data processing Cross-platform data processing

Techniques to address the heterogeneity of today’s computing systems are applicable

to a wide range of research areas and engineering tasks in query processing.
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Processing Java UDFs
N a C++ Environment



Extending the Apache Spark ecosystem

Add transactional processing

Speed up analytical processing

Spark SQL queries can contain
arbitrary Java/Scala UDFs

Keep Spark SQL as user frontend
Q@ @@ P Sb
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Replace Spark processing engine
,\ with a C++ engine

)\ IBM Wildfire

Q U Q\g?j (1) Execute Java UDFs inside

« embedded JVM
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(2) Compile Java UDFs to
machine code




Java Native Interface (JNI)

(i: Int) =>

1

109 interations

(" ) (" ) 1000
JVM < JNI > C
- _J - _J

Java methods can be implemented in C
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C programs can instantiate a JVM

Cycles / lteration [logscale]

APls to manipulate Java objects
and to call Java methods 1-

JNI Java
Method call

> 500x JNI
call overhead

JNI call for every tuple has significant overhead.

Query Processing on Heterogeneous Systems

T
* 11



Vectorized execution

(i: Int) => 1i
109 Interations
1000

100 -~

10 1

Cycles / lteration [logscale]

JNI Java 10° 10’ 10° 10° 10* 10°
Method call Vector size

Moving part of the loop inside the JVM eliminates JNI call overhead.
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Vectorized execution in embedded JVM

udf.apply
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Vectorized execution in embedded JVM

public class StridedExecutionWrapper {

public static void executeUdf(UdfClass udf,
int numRows,
ByteBuffer output,
ByteBuffer[] inputs) 1

for (int i = 0; i < numRows; ++i) {
output.putX(udf.apply(inputs[0].getX(), ..., inputs[N].getX()));
¥
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Vectorized execution in embedded JVM

for (int i = 0; i < numRows; ++i) {
output.putXCudf.apply(inputs[0].getX(), ..., inputs[N].getX()));
5

Vectorized
execution
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Vectorized execution in embedded JVM

Java Direct ByteBuffers
reduce data copies

ByteBuffer output,
ByteBuffer[] inputs

for (int i = 0; i < numRows; ++i) {
output.putXCudf.apply(inputs[0].getX(), ..., inputs[N].getX()));
5

Vectorized
execution



JIT compilation to machine code

Spark JDF BugVM UDF - Wildfire
frontend —| Java compiler LLVM engine
bytecode
v No JNI call overhead X No HotSpot VM optimizations
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Evaluation

Runtimes relative to execution in Spark, different scales on y axes!
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Runtimes relative to execution in Spark, different scales on y axes!
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Evaluation

Runtimes relative to execution in Spark, different scales on y axes!

Normalized runtime
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Evaluation

Runtimes relative to execution in Spark, different scales on y axes!

Range UDF Distance UDF Upper case UDF
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Evaluation

Runtimes relative to execution in Spark, different scales on y axes!
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Evaluation

Runtimes relative to execution in Spark, different scales on y axes!

Range UDF Distance UDF Upper case UDF
(bandwidth—bound) (compute—-bound) (Object creation)
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s
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JNIl call Hand- Vectorized Compiled JNIl call Hand- Vectorized Compiled JNIl call Hand- Vectorized Compiled
per tuple written inJVM LLVM IR pertuple written inJVM LLVM IR per tuple written inJVM LLVM IR

Vectorized execution in Wildfire is faster Compilation to machine code is fast if UDF is

than execution in Spark. compute-heavy and does not create objects.
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Query Processing on Heterogeneous
CPU/GPU Systems



FPerformance characteristics
of CPUs and GPUs

AMD EPYC 7702P vs. NVIDIA A100

e 3% e [ X
. 19.5 1448 A 1.34 4096
A % A
= g Q 0.705 =
= 6.86 5 = ' &
0 0 0 0
CPU GPU CPU GPU CPU GPU CPU GPU
Aggregate performance Memory bandwidth Serial performance Memory size
CPUs GPUs
Optimized for single thread performance Optimized for throughput applications
=xtract implicit instruction parallelism Exploit explicit data parallelism
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GPU integration

Multi-core CPU and dedicated GPU CPU and GPU cores on single die

14.9 GiB/s
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Challenges of a heterogeneous
CPU/GPU query processing system

* ENE
O‘ Schedule query workload on different processors  |cpu H GPU
[

\b

Adapt query processing code to different processors |[EEELy, 294

© Mitigate the data transfer bottleneck
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Workload scheduling classification scheme

Processor usage — generic compute resource or specialized for specific tasks
Scheduling time — before or during query execution

Scheduling strategy — heuristics, cost models, work stealing

Workload distribution

Task granularity — what kind of tasks are scheduled

Data partitioning =
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Workload scheduling classification scheme

Processor usage — generic compute resource or specialized for specific tasks
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Processors as generic compute resources

lasks can be scheduled on any e @ e
Processor
Heuristics, cost models, work stealing @ T
Processors are distinguished by their I R °
relative throughput

On GPU S




W

ProCessors as specialized resources

Developer analyzes tasks and assigns
them to suitable processor

001000110101110110100111101111010"

Example: Approximate & Refine
Pirk et al., [CDE 2014]

Bitwise partition of data
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ProCessors as specialized resources

Developer analyzes tasks and assigns
them to suitable processor

Example: Approximate & Refine

[Pirk et al., ICDE 2014] 2 N
Sitwise partition of data 001000110101 101101001111011110101
Place higher bits on GPU, lower bits on CPU On GPU On CPU

Compute approximate result on GPU
& refine into exact result on CPU



Publication GPU Processor Scheduling Scheduling strategy Workload Task Data
integration usage time distribution granularity partitioning
Full query processing systems
Approx. & Refine Pirk et al., 2014 Dedicated Specialized  Static Task nature Algorithm-specific — Bits
Stat. coproc. Heimel et al., 2015 Dedicated Specialized  Static Task nature Algorithm-specific — —
Mega-KV Zhang et al., 2015 Dedicated Specialized  Static Task nature Algorithm-specific — —
Caldera, Appuswamy et al., 2017 Dedicated Specialized  Static Task nature Algorithm-specific  Query type —
Raza et al. Raza et al., 2020 Dedicated Specialized  Static Task nature Algorithm-specific  Query type —
GDB He et al., 2009 Dedicated Generic Static Cost model Task partitions Operator Tuples
CoGaDB Bref3, 2014 Dedicated Generic Both Data locality, cost model Operator placement  Operator Columns
SABER Koliousis et al., 2016 Dedicated Generic Dynamic Load balancing, cost model Single partition Query Data batch
DB2 BLU Meraji et al., 2016 Dedicated Generic Dynamic Task nature, load balancing Task partitions Operator Tuples
HetExchange Chrysogelos et al., 2019  Dedicated Generic Hybrid Load balancing, data locality Task partitions Pipeline Data batch
He et al. He et al., 2014 Integrated Hybrid Static Task nature, cost model Task partitions Primitive Tuples
DIDO Zhang et al., 2017 Integrated Hybrid Hybrid Task nature, load balancing, cost model Operator placement  Operator Query batch
FineStream Zhang et al., 2020 Integrated (Generic Dynamic Cost model Operator placement  Operator —
HERO Karnagel et al., 2017 Both Generic Dynamic Data locality, cost model Operator placement  Primitive —
Individual query processing tasks
GSS Bggh et al., 2013 Dedicated Specialized  Static Task nature Algorithm-specific — —
STIG Doraiswamy et al., 2016 Dedicated Specialized  Static Task nature Algorithm-specific — —
HBT-tree Shahvarani et al., 2016 Dedicated Specialized  Static Task nature, cost model Algorithm-specific — —
Stehle et al. Stehle et al., 2017 Dedicated  Specialized  Static Task nature Algorithm-specific — —
G-Grid Li et al., 2018 Dedicated  Specialized  Static Task nature Algorithm-specific — —
GAT Zhang et al., 2018 Dedicated Specialized  Static Task nature Algorithm-specific — —
Sioulas et al. Sioulas et al., 2019 Dedicated  Specialized Static Task nature Algorithm-specific — —
Gubner et al. Gubner et al., 2019 Dedicated Hybrid Hybrid Task nature, load balancing Task partitions Operator Key batch
SCCG Wang et al., 2012 Dedicated Hybrid Dynamic Task nature, load balancing Task partitions Operator Polygon pairs
Lutz et al. Lutz et al., 2020 Dedicated Hybrid Hybrid Task nature, load balancing Task partitions Operator Tuple batch
Beier et al. Beier et al., 2012 Dedicated Generic Dynamic Cost model Single partition — Query batch
Bggh et al. Bggh et al., 2017 Dedicated Generic Dynamic Load balancing Single partition — Cuboids, points
He et al. He et al., 2013 Integrated Generic Static Cost model Task partitions Primitive Tuples
HELLS join Karnagel et al., 2013 Integrated Specialized  Static Task nature Algorithm-specific — —
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Processor sensitivity

How sensitive are processors to operator implementation details®?

@ \

S @ @;\S?f Performance analysis of selection and hash aggregation operators

- @ |
| Multiple CPUs, GPUs + Intel Xeon Phi coprocessor
J \




Selection variants

X<

Operation 5118 [4|10/8|8|8 5»‘11110001‘

Basic selection kernels  SEQUENTIAL, GLOBALATOMIC, LOCALATOMIC,
REDUCE, COLLECT, TRANSPOSE

Variants Thread configuration

Low-level implementation parameters

Processors 7 CPUs, 5 GPUs, Xeon Phi
AMD, IBM, Intel, Nvidia



Selection variants performance

Selection on 32 million random integers, uniform distribution, median of 10 repetitions

SEQUENTIAL on Intel Core i7-4900MQ

8
16
32
64

8 U
16 U
32 U
64 U
8 BF

16 BF

32 BF

64 BF

8 BF U

Branch-free | 16 BF U

and unrolled 32 BF U
64 BF U

Bitmap size —

Unrolled ——

Branch-free —

0

TRANSPOSE on Intel Xeon Phi 7120

8
16
32
64
[ms] 8 U [ms]

21 16 U 3.0
32 U

11 n Fastest variant 8 BF 2.0
16 BF

8.5 32 BF 1.6
64 BF

6.3 8 BF U 1.3
. < 10% slower 16 BF U
\_/ 32 BF U
64 BF U

02 04 0.6 08 1 0 02 04 06 08 1
Selectivity Selectivity

No single variant performs best on every processor.
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Competitive variants

At most 10% slower than the fastest variant

Number of Competitive Maximum
Processor . . Percentage
variants variants slowdown
Intel Xeon E5620 5880 1370 23 % 32
Nvidia Tesla K40m 4696 129 2.7 % 136
Intel Xeon Phi 7120 3886 ®) 0.15 % 147

Some processors are very sensitive to implementation details.

Query Processing on Heterogeneous Systems
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Hash aggregation variants

Parallelization strategy SHARED, INDEPENDENT, VWORKGROUPLOCAL

Variants Thread configuration
Processors 6 GPUs
AMD, Nvidia

Different micro architectures



o L]
INfluence of thread configuration

128 million input rows, 32-bit keys and values, Sum aggregation, group cardinality between 1 and 228

Performance penalty when a thread configuration optimized for a specific GPU (rows)

Mexecuted on another GPUK(efe][ViasalaS)]
Tesla K40m GeForce GTX 980 GeForce GTX 1080 Tesla V100 A10-7850K Radeon R9 Fury
Tesla K40m
GeForce GTX 980
GeForce GTX 1080
Tesla V100
A10-7850K
Radeon R9 Fury
0 10 20 0 1 2 3 4 0 1 2 3 0.0 25 50 75 10000 05 1.0 1.5 20 O 5 10 15 20

Normalized runtime (relative to the fastest variant per group cardinality, different scales)
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INfluence of thread configuration

128 million input rows, 32-bit keys and values, Sum aggregation, group cardinality between 1 and 228

Performance penalty when a thread configuration optimized for a specific GPU (rows)
Mexecuted on another GPUK(efe][ViasalaS)]

Same manufacturer
but much slower

Tesla K40m GeForce GTX 980 GeForce GTX 1080 Tesla V10 A10 7850K Radeon R9 Fury
Testa kaom | B BN - B |l

GeForce GTX 980
GeForce GTX 1080
Tesla V100
A10-7850K
Radeon R9 Fury

0 10 20 0O 1 2 3 4 0 1 2 3 0.0 25 50 7.5 1000.0 05 1.0 15 20 O 5 10 15 20
Normalized runtime (relative to the fastest variant per group cardinality, different scales)
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INfluence of thread configuration

128 million input rows, 32-bit keys and values, Sum aggregation, group cardinality between 1 and 228

Performance penalty when a thread configuration optimized for a specific GPU (rows)
Mexecuted on another GPUK(efe][ViasalaS)]

Same manufacturer
but much slower

Tesla V10 A10-7850K Radeon R9 Fury

4.6 1.2 4.2
1.6 1.4 2.8
2.4 1.3 1.8
Same GPU 1.2 1.2
2.4

Tesla K40m GeForce GTX 980 GeForce GTX 1080

Same GPU 3.4 2.7
10.5 Same GPU 1.1
20.8 1.2 Same GPU
4.0 1.3 1.2
1.8 1.8
2.5 2.1

Tesla K40m
GeForce GTX 980
GeForce GTX 1080

Tesla V100
A10-7850K 7.5 7.2 Same GPU 16.9
Radeon R9 Fury 9.6 1.5 :l Same GPU

0 10 20 0O 1 2 3 4 0 1 2 3 0.0 25 50 7.5 1000.0 05 1.0 15 20 O 5 10 15 20
Normalized runtime (relative to the fastest variant per group cardinality, different scales)
> 20x penalty

The fastest thread configuration is highly GPU-specific.
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Variant tuning

Let the database find a fast operator implementation automatically

@ \

V @ Qg?f Extend micro adaptivity to handle large search spaces

- @ |
\ Extend local search to handle runtime variation
J \
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Candidate selection in large variant spaces

Variant universe

Explore search space, exploit fast variants l

Vectorized runtime
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Candidate selection in large variant spaces

Variant universe

Pick a small working pool of variants l

7

Working pool

Explore working pool, exploit fast variants l

Vectorized runtime |—

Update working pool after each query
Keep 2 fastest variants

Replace others with genetic algorithm
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Evaluation w

Selection variants, selectivity 0.5, 1024 blocks/query, 8 variants in pool, genetic algorithm after each query, 100 reps

Xeon E5620 Tesla K4A0M Xeon Phi 7120
0.5 ° o.© ° o . © 174 .
E G o Worst case E G 11x = 2.7x €T 15- 19x — 5.8x
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5 | o5 71 o i1l
7p) 7p)
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T 5. Median © 2 5- . T S
E o 1.16x — 1.05x ) E o A Ax = 3.4x
g-c% 0 / g% 3- ! o 1.95x = 1.37x g'}% > 7
S 10 T T S— 1 T T N— T T
1 10 1 10 1 10
Query Query Query
23% competitive variants " . - .
5 P . 2.7 % competitive variants 0.15% competitive variants
— 88% chance that initial pool 5 5
— 20% chance — 1.2% chance

contains a competitive variant

Variant tuning performance depends on initial working pool and number of competitive variants.
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I/
Performance plateaus

Shared aggregation, Tesla K40m, 8 million groups, 128 million input rows, 32-bit keys and values

1024
256
64

16

Work group size

1 2 4 8 16 32 64 256 1024
Work groups per compute unit

Runtime [ms]

6.9 19 50 136 370
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I/
Performance plateaus

Shared aggregation, Tesla K40m, 8 million groups, 128 million input rows, 32-bit keys and values
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I/
Performance plateaus

Shared aggregation, Tesla K40m, 8 million groups, 128 million input rows, 32-bit keys and values
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Runtime variation-aware local search

1024
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Runtime variation-aware local search

256 (1) Start with initial thread configuration
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Work groups per compute unit



Runtime variation-aware local search

1024 ]

256
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N
73
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(1) Start with initial thread configuration

(2) Follow gradient in search space
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Runtime variation-aware local search
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(1) Start with initial thread configuration
(2) Follow gradient in search space
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Runtime variation-aware local search

1024 .35
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Evaluation w

Hash aggregation variants, 128 million input rows, 32-bit keys and values, 3 samples per group cardinality

1.40 1 :
S 1.35- Worst case e
S 1.39x = 1.29x
O Cc 1.30 ~ o
£3 -
E, o 1.25- Reduced variation
B+ 1.20-
NGO
© L 1.15- o g °
= 3 0 . Median runtime
§ 2 1.10 - s 0 . indistinguishable
2 ’ ° . 0 . from fastest
© 1.05- : | s : . /
S | = ﬁ
~ 1.00 - * - + G — + _l_ i —i— —'— <4
AMD AMD Nvidia Nvidia Nvidia Nvidia
A10-7850K Radeon R9 Fury Tesla K40m GeForce GTX 980 GeForce GTX 1080 Tesla V100

. Strict runtime comparison . Detection of performance plateaus

Exploiting processor and operator characteristics finds fast variants.
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Conclusion



Summary of contributions

Java| —»

<
C++
SO,

Processing Java UDFs in a C++ environment

Overcome the JNI overhead when executing Java UDFs

Query Processing on Heterogeneous CPU/GPU Systems

Survey of query processing systems and individual query processing tasks

Classification scheme for workload distribution on heterogenous processors

Operator Variant Tuning on Heterogeneous Processors

Analysis of selection and hash aggregation on heterogeneous processors

Let the database find fast operator implementations automatically



